Study programme(s): Computer Science			
Level: bachelor			
Course title: Introduction to Computational Science			
Lecturer: Nataša Krklec Jerinkić			
Status: obligatory			
ECTS: 7			
Requirements:			
Learning objectives			
- Knowledge of selected fundamental algorithms in computational science			
 Knowledge of essential notions and methods in computational science 			
- Knowledge of basic techniques for analysis of numerical algorithms			
Learning outcomes			
- Ability to choose the appropriate numerical method for concrete problems			
- Ability to interpret numerical results			
- Ability to implement numerical algorithms efficiently in selected programming languages			
Synabus			
• Error, stability, convergence, including truncation and round-off			
• Function approximation including Taylor's series, interpolation, extrapolation, and regression			
• Numerical differentiation and integration (Simpson's Rule, explicit and implicit methods)			
• Differential equations (Euler's Method, finite differences)			
• Direct and iterative methods for linear systems			
Linear least squares problems			
Eigenvalue decomposition; singular value decomposition			
Introduction to modeling			
Literature			
1. Uri Ascher and Chen Greif: A First Course in Numerical Methods. SIAM, 2011.			
2. Gilbert Strang: Computational Science and Engineering. Wellesley, MA: Wellesley-Cambridge			
Press, 2007			
Weekly teaching load			
Lectures: Exercises: Practica	ll Exercises:	Student research:	Other:
3 0 2		0	0
Teaching methodology			
Lectures; revisions of the material; active students' participation in problem solving; knowledge test –			
Crading method (maximal number of points 100)			
Pro avam obligations Points VIII Final avam naints			
2 Colloquia		Final exam	
	40		00