
Study programme(s): Computer Science
Level: bachelor
Course title: Theoretical Computer Science
Lecturer: Miloš Stojaković
Status: obligatory
ECTS: 6
Requirements: Discrete Structures 1
Learning objectives
Students should learn and understand the basic concepts and methods of computer science, all the way
from its historical context, laying a solid foundation for an algorithmic approach to problem solving.
Learning outcomes
Minimum: At the end of the course, it is expected that a student understands basic notions of complexity
theory, using it to distinguish between different classes of problems.
Desirable: At the end of the course, it is expected that a successful student masters the concept of
hardness, being able to classify and tackle some standard algorithmic problems based on their
complexity.
Syllabus
Alphabets, words, languages, measuring the information content of words, representation of algorithmic
tasks, decidability. Finite automata, regular and context-free grammars.
Turing machines and computability. Complexity theory, space and time complexity. NP-hardness,
polynomial reductions, NP-completeness.
Design of polynomial algorithms, examples. Algorithms for hard problems, examples.
Literature

 M. Sipser, Introduction to the Theory of Computation. Thomson Learning, 2012.
 J. Hromkovič, Theoretical Computer Science: Introduction to Automata, Computability,

Complexity, Algorithmics, Randomization, Communication, and Cryptography, Springer, 2011.
 J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Languages, and

Computations, Prentice Hall, 2006.
Weekly teaching load

Other:
0

Lectures:
3

Exercises:
2

Practical Exercises:
0

Student research:
0

Teaching methodology
Blackboard lectures, blackboard exercises.
Grading method (maximal number of points 100)
Pre-exam obligations points Final exam points
Colloquia 50 Oral exam 50

