Study programma(s): Computer Science			
Laval: bachelor			
Course title: Discrete Probability and Statistics			
Lecturer: Miloš Stojaković			
Status: obligatory			
ECTS: 6			
Requirements: Discrete Structures 1 Discrete Structures 2			
Learning objectives			
Students should learn and understand the basic notions and concepts of probability theory several			
standard approaches in statistical analysis, as well as their connections with computer science.			
Learning outcomes			
Minimum: At the end of the course, it is expected that a student is able to perform basic discrete			
probabilistic analysis based on counting, and master standard statistical methods.			
Desirable: At the end of the course, it is expected that a successful student is able to apply his/her			
knowledge of probability theory in a more complicated setting, possibly requiring a deeper analysis.			
Syllabus			
Counting in combinatorics and discrete probability spaces. Formal definition of a probability space.			
Probability measure, independence, random variables. Discrete and continuous distributions, conditional			
probability. Expectation, properties. Variance, properties. Limit theorems. Simulations.			
Randomness and computation. Probability in information theory.			
Statistical analysis. Parameter estimation, maximum likelihood and moment methods, tests, confidence			
intervals.			
Literature			
• S. Ross, <i>A First Course in Probability</i> , Pearson, 2014.			
• J. Rice, Mathematical statistics and data analysis, Duxbury, 2006.			
• M. Mitzenmacher, E. Upfal. Probability and computing: Randomized algorithms and			
probabilistic analysis, Cambridge University Press, 2005.			
Weekly teaching load			
Lectures: Exercises: Practica	l Exercises:	Student research:	Other:
2 2 0		0	0
Teaching methodology			
Blackboard lectures, blackboard exercises.			
Grading method (maximal number of points 100)			
Pre-exam obligations	points	Final exam	points
Colloquia	50	Oral exam	50