Study programme(s): Computer Science					
Level: Masters Academic Studies					
Course title: Machine Learning					
Lecturer: Miloš M. Radovanović					
Status: elective					
ECTS: 8					
Requirements: Continuous Probability and Statistics					
Learning objectives					
Enabling students to master the principles and functioning of machine-learning (ML) techniques, as well as their					
implementation and application to real-world problems.					
Learning outcomes					
Minimum: At the end of the course it is expected from a successful student to demonstrate basic understanding of the					
principles of machine learning, and capability to apply ML techniques on an illustrative example.					
Desirable: At the end of the course it is expected from a successful student to demonstrate thorough understanding					
of the principles of machine learning through critical analysis, selection, implementation, and application of ML					
techniques to real-world problems.					
Syllabus					
Theoretical instruction					
Notions of machine learning (ML) and data mining. Intelligent agents, the action-perception cycle, applications.					
Supervised, semi-supervised and unsupervised learning. Classification: techniques, performance measures,					
overfitting. Computational learning theory. Dimensionality reduction, feature selection. Clustering: techniques,					
performance measures. Reinforcement learning. Numeric prediction, regression, neural networks. Association					
learning. Data transformation and preparation. Applications of machine learning techniques.					
Practical instruction					
Application of machine-learning techniques on illustrative examples. Implementation of solutions of more complex					
ML problems in an appropriate programming language, aided by external libraries and resources.					
Literature					
Recomended					
1. I. H. Witten, E. Frank, M. A. Hall, C. Pal. Data Mining: Practical Machine Learning Tools and Techniques. 4th					
Edition, Morgan Kaufmann, 2016					
2. Y. S. Abu-Mostata, M. Magdon-Ismail, HT. Lin. Learning from Data: A Short Course. AMLBook, 2012					
Weekly teachin	g load			~ 1	0.1
Lectures:	Exercises:	Practical Exerc	ises:	Student research:	Other:
2		2		0	0
Teaching methodology					
Lectures are held using classical methods involving a projector. Principles and functioning of machine-learning					
techniques are explained. During exercises, classical teaching methods are used to practice the principles and					
functioning of ML techniques through illustrative examples. Implementations of ML techniques are presented and					
tested on the computer. Students' knowledge is checked through solution of practical problems (individual and					
nomework) and written tests (elective). At the oral exam the student demonstrates understanding of ML principles					
and techniques, and methodologies for their application to pratical problems.					
Graung method (maximal number of points 100)					
Pre-exam oblica	ations	1 11	points	Final exam	points
practical exercises – individual problems			20	oral examination (obligatory)	20-40
practical exercises – homework problems			40	tests (elective)	0-20