Study programme(s): Computer Science
Level: master
Course title: Combinatorial Algorithms

Lecturer: Miloš Stojaković

Status: elective ECTS: 6

Requirements: Introduction to Algorithms, Discrete Structures 1, Discrete Probability and Statistics

Learning objectives

Students should learn and understand how to use various types of algorithms that deal with discrete data structures and networks.

Learning outcomes

Minimal: At the end of the course, it is expected that a student is familiar with the concept of computer processing of discrete data structures, and particularly graphs and networks.

Desirable: At the end of the course, it is expected that a successful student is able to find a suitable algorithm for a given problem, to modify and adjust a standard algorithm if needed.

Syllabus

Data structures for storing sets, arrays and networks. Generating and enumerating the elements of the partitive set, subsets of fixed size, permutations. Dynamic programming, examples. Algorithms on networks. Network representation. Hardness, some complexity classes and polynomial reductions. Algorithms for finding a Hamiltonian cycle, a vertex cover, an edge cover, a dominating set, or a proper coloring. Steiner trees. Knapsack problem, Bin packing, TSP. Exact algorithms. Randomized algorithms. Approximation algorithms.

Literature

- T.H.Cormen, C.E.Leiserson, R.L.Rivest, C.Stein, *Introduction to Algorithms*, MIT Press, 2009.
- F.V. Fomin, D. Kratsch, Exact exponential algorithms, Springer, 2010.
- V.V. Vazirani, *Approximation Algorithms*, Springer, 2003.
- R. Motwani, P. Raghavan, Randomized Algorithms, Chapman & Hall/CRC, 1995.

- IX. IV	iotwain, i . itag	navan, Kanaomizea mgor	minus, Chapman & Han Cite	, 1773.
Weekly teac	hing load			
Lectures:	Exercises:	Practical Exercises:	Student research:	Other:
2	2	0	0	0
Teaching m	ethodology			·
Blackboard l	lectures, blackb	oard exercises.		
Grading me	thod (maxima	l number of points 100)		
Pre-exam oblications		points	Final exam	points
Colloquia		30	Oral exam	70