Study programme(s): Computer Science				
Level: master				
Course title: Advanced Computational Science and Optimization				
Lecturer: Dušan Jakovetić				
Status: elective				
ECTS: 6				
Requirements: Introduction to Computational Science				
Learning objectives				
- Understanding of a wide range of standard and modern numerical methods, with an emphasis on				
optimization methods				
- Ability to select an appropriate numerical algorithm for the problem at hand				
- Ability to implement the taught algorithms in selected programming languages				
Learning outcomes				
- Ability to apply the taught algorithms on real-world problems				
- Ability to apply the taught algorithms on research problems from various domains of computer				
science				
 Ability to customize and analyze efficient numerical algorithms for a given application Syllabus 				
Theoretical instruction:				
Iterative methods for solving systems of linear equations: Jacobi, Gauss-Seidel, relaxation methods; First				
order optimization methods: gradient; projected gradient; line search; proximal gradient; accelerated				
Nesterov gradient; accel				
Nesterov gradient; accelerated gradient for non-smooth optimization (FISTA); Second odred optimization methods: Newton; quasi-Newton; Broyden–Fletcher–Goldfarb–Shanno (BFGS); limited				
memory BFGS; Randomized optimization methods: randomized coordinate gradient; stochastic/online				
gradient; Parallel and distributed optimization methods: primal decomposition; dual decomposition;				
augmented Lagrangian; ADMM; distributed gradient.				
Practical instruction:				
Application examples in various domains of computer science; implementation of the taught methods in				
selected software languages; application of selected methods on real-world examples.				
Literature				
1. S. Boyd and L. Vandenberghe: Convex Optimization, Cambridge University Press, 2004				
2. J. Nocedal and S. Wright: Numerical Optimization, Springer, 2011				
3. D. Bertsekas and J. Tsitsiklis: Parallel and Distributed Computation: Numerical Methods,				
Prentice-Hall, 198	9		*	
Weekly teaching load				
Lectures: Exercise	Practica	l Exercises:	Student research:	Other:
2 s:	2		0	0
0				
Teaching methodology				
Lectures; revisions of the material; active students' participation in problem solving; knowledge tests -				
colloquia; application of the taught material on real world examples.				
Grading method (maximal number of points 100)				
Pre-exam obligations		Points	Final exam	points
2 Colloquia		40	Final exam	60
		1		