
Study programme(s): Information Technologies
Level: Bachelor
Course title: Data Structures and Algorithms 2
Lecturer: Miloš Savić
Status: obligatory
ECTS: 7
Requirements: None
Learning objectives
The objective of the course is to introduce students to fundamental sorting and searching algorithms, related abstract
data types and general algorithmic techniques.
Learning outcomes
Minimum: Successful students should be capable to use the implementation of presented algorithms and abstract
data types to solve practical programming problems.
Desirable: At the end of the course it is expected that successful students deeply understand and are able to
implement presented algorithms, techniques and abstract data types, and apply them in a variety of practical
programming problems.
Syllabus
Theoretical instruction
Elementary sorting algorithms. The priority queue abstract data type (ADT). Advanced algorithms for sorting arrays
and lists. Hash functions. The set ADT and the map ADT realized by open and closed hash tables. Divide and
conquer algorithms. The backtracking algorithmic technique and its applications to combinatorial enumeration and
optimization problems. Greedy algorithms. Branch and bound algorithms. Dynamic programming. General and
binary trees. Algorithms for searching and traversing binary trees. Prefix codes and Huffman coding trees. The set
ADT and the map ADT realized by binary search trees. String distances. Elementary and advanced string searching
algorithms.

Practical instruction
Typical applications of the presented algorithms, algorithmic techniques and abstract data types. Individual practical
programming tasks related to sorting, hash functions and tables, backtracking, dynamic programming, and tree
searching and traversal algorithms.
Literature
Recomended
1. Robert Sedgewick and Kevin Wayne. Algorithms, Fourth edition. Addison-Wesley, 2011.
2. Michael T. Goodrich, Roberto Tamassia and Michael H. Goldwasser. Data structures & algorithms in Java,

Sixth edition. Wiley, 2014.
3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. Introduction to algorithms,

Third edition. The MIT press, 2009.
Weekly teaching load

Other:Lectures:
3

Exercises
:
0

Practical Exercises:
2

Student research:

Teaching methodology
Theoretical classes are based on the classical teaching model involving a projector. Presented algorithms, techniques
and data types are augmented with illustrative case studies implemented Java (e.g. the n-queens problem, the
knapsack problem, string edit distance, closest pair of points, etc.). At theoretical exercises, solutions of practical
programming problems are presented and discussed with students. At practical exercises organized in computer labs,
students have to individually solve practical programming problems involving algorithms, techniques and data types
covered by theoretical classes. To approach the oral exam students have to pass pre-exam obligations consisting of 4
practical programming tasks conducted on computers. At the oral exam students are expected to demonstrate the in-
depth understanding of the topics covered by the course.
Grading method (maximal number of points 100)
Pre-exam oblications points Final exam points
4 practical tasks 50 (10+10+15+15) Oral examination 50

