Study programme(s): Information Technologies	
Level: Bachelor	
Course title: Combinatorics, Probability and Statistics	
Lecturer: Mirjana D. Mikalački	
Status: obligatory	
ECTS: 6	
Requirements: Discrete Structures 1, Discrete Structures 2	
Learning objectives	
Teaching students to understand basic ideas and concepts of probability theory, that includes some	
combinatorics, and statistics, with applications in computer science.	
Learning outcomes	
Minimal: At the end of the course, it is expected that students know basic concepts of combinatorics and	
standard types of random variables and distributions that are most commonly used in computer science	
and that they can calculate expectation and variance, and master some standard statistical methods.	
Desirable: At the end of the course, it is expected that successful students can combine basic and	
advanced knowledge in probability theory and statistics in solving more complex problems.	
Syllabus	
Basics of combinatorics, counting, binomial and multinomial coefficients. Principle of inclusion and	
exclusion. Events, outcomes, probability spaces and their properties. Conditional probability. Bayes'	
formula, independent events. Random variables. Discrete and continuous distributions. Expectation,	
properties. Variance, properties. Limit theorems. Simulations. Probability and algorithms.	
Statistical analysis. Population, sample. Methods of parameter estimation. Hypothesis testing.	
Literature	
• D. Mašulović, Odabrane teme diskretne matematike, Departman za matematiku i informatiku, PMF u	
Novom Sadu, 2007.	
• S. Ross, <i>A First Course in Probability</i> , Ninth Edition, Pearson, 2014.	
• J. Rice, <i>Mathematical Statistics and Data Analysis</i> , Third Edition, Duxbury, 2006.	
• M. Mitzenmacher, E. Upfal, <i>Probability and computing: Randomized algorithms and probabilistic analysis</i> ,	
Cambridge University Press, 2005.	
• R. Tošić, <i>Kombinatorika</i> , Univerzitetski udžbenik 88, 1999.	
• D. Rajter Cirić, <i>Verovatnoća</i> , drugo dopunjeno izdanje, PMF, Novi Sad, 2009.	
• Z. Lozanov Crvenković, <i>Statistika</i> , PMF, Novi Sad, 2012.	
Weekly teaching load	
Lectures: Exercises: Practical Exercises: Student research: Other:	
5 2 0 0 Teaching methodology	
Frontal lectures, using classical methods, Blackhoard exercises	
Crading method (maximal number of points 100)	
Pre-exam obligations noints Final axam noints	ints