Study programme(s): Information Technologies			
Level: Bachelor			
Course title: Analytic Geometry			
Lecturer: Dragan Mašulović, Maja Pech			
Status: elective			
ECTS: 6			
Requirements: Discrete Structures 2			
Learning objectives			
In this course students shall acquire deeper knowledge of analytic geometry that are vital to computer			
science and in particular to computer graphics. Students will be able to solve geometric problems in 2D			
and 3D using techniques of analytic geometry and will understand fundamental concepts of vector spaces.			
Learning outcomes			
At the end of the course a successful student will be able to perform standard calculations in vector calculus, solve			
concrete geometric problems in 2D and 3D using strategies of analytic geometry, identify bases of vector spaces,			
compute the dimension of a vector space, understand and compute with linear and affine maps and compute matrix			
representation of linear and affine maps.			
Syllabus			
Vector calculus			
Elements of analytic geometry in 2D and 3D			
Vector spaces over a field			
Basis, dimension, finitely dimensional vector spaces over a field			
Linear maps, matrices			
Affine maps, matrix representation			
Literature			
B. Solomon: "Linear Algebra - Geometry and Transformation", CRC Press, Chapman and Hall, 2015			
Y. Lin: "Geometric Linear Algebra", World Scientific, 2005			
Weekly teaching load Lectures: Exercises Practica	ll Exercises:	Student research:	Other:
3 Exercises Practica	II EXERCISES.	0	0
1		0	U
Teaching methodology			
Blackboard lectures, Blackboard exercises			
Grading method (maximal number of points 100)			
Pre-exam obligations	points	Final exam	points
Colloquium 1	30	Oral exam	30
Colloquium 2	40		